

Problem:

Prove equalities using the properties of set operations and definitions of operations.

 $C \subseteq D \Rightarrow A \times C \subseteq B \times D.$

Solution:

 $A \times C = \{(a,c) \mid a \in A, c \in C\}$ $B \times D = \{(b,d) \mid b \in B, d \in D\}$

Only $C \subseteq D$ is known, from $C \subseteq D$ does not imply $A \times C \subseteq B \times D$, that is, the equality will be true if $A \subseteq B$.

Let us prove with an example that the statement $C \subseteq D \Rightarrow A \times C \subseteq B \times D$ is false.

Let sets $C = \{1,2\}, D = \{1,2,3,4\}$ be given, where $C \subseteq D$

 $A = \{1,3,5,6\}, B = \{3,7\}, \text{ where } A \not\subseteq B$

 $A \times C = \{(1,1), (1,3), (1,5), (1,6), (2,1), (2,3), (2,5), (2,6)\}$

 $B \times D = \{(1,3), (1,7), (2,3), (2,7), (3,3), (3,7), (4,3), (4,7)\}$

Thus, from the example it is clear that $(1, 1) \notin B \times D \Rightarrow A \times C \notin B \times D$ under the condition that $C \subseteq D$.