Problem:

Find all values of the parameter a, for which

- 1) the equation $ax^2 + x + 17 = 0$ has only one root;
- 2) the equation $ax^2 + (5 3a)x a = 0$ has two roots of different signs.

Solution:

1) If $a = 0 \Rightarrow x = -17$ is the only root. If $a \ne 0$, both roots of the equation are equal \Rightarrow

$$D = 1 - 4 \cdot 17 \cdot a = 0 \Rightarrow a = \frac{1}{4 \cdot 17} = \frac{1}{68} \Rightarrow \frac{x^2}{68} + x + 17 = 0 \Rightarrow x_1 = x_2 = -34.$$

2)
$$ax^2 + (5-3a)x - a = 0$$
 has two roots of different signs, let $x_1 < 0, x_2 > 0$. \Rightarrow

$$\Rightarrow x_1x_2 = -\frac{a}{a} = -1 < 0, i. e. when \ a \neq 0 \ and \ D = (5-3a)^2 + 4a^2 > 0 \ both \ roots \ of \ the \ equation \ are \ real$$
 and one is positive, the other is negative (this follows from $x_1 \cdot x_2 < 0$).

Answer: 1)
$$a = 0$$
, $a = \frac{1}{68}$, 2) $a \neq 0$.