Problem:

Determine the number of roots of the equation for each value of the parameter a.

$$ax^2 + (a+1)^2x + a + 2 = 0.$$

Solution:

Let's find the number of roots of the equation for each parameter a.

The discriminant
$$D=(a+1)^4-4a(a+2)=(a+1)^4-4(a+1)^2+4=((a+1)^2-2)^2\Rightarrow$$

 $\Rightarrow D=((a+1)^2-2)^2\geq 0$ for all $a\in\mathbb{R}\Rightarrow$ the equation for each $a\in\mathbb{R}$ has a root. When $D=0\Rightarrow$
 $\Rightarrow (a+1)^2-2=0\Rightarrow a=\pm\sqrt{2}-1$, in this case the equation has only one root.

When $D > 0 \Rightarrow (a+1)^2 - 2 \neq 0 \Rightarrow a \in \left(-\infty; -\sqrt{2} - 1\right) \cup \left(-\sqrt{2} - 1; \sqrt{2} - 1\right) \cup \left(\sqrt{2} - 1; +\infty\right) \Rightarrow$ the equation has two roots.

Answer: has 1 root when
$$a = -\sqrt{2} - 1$$
, $a = \sqrt{2} - 1$,

has two roots when
$$a \in (-\infty; -\sqrt{2} - 1) \cup (-\sqrt{2} - 1; \sqrt{2} - 1) \cup (\sqrt{2} - 1; +\infty)$$
.