

Problem:

Find all values of *a* for which the sum of the real roots' squares of the equation

$$x^2 - ax + a - 2 = 0$$
 is minimal.

Solution:

 $x^2 - ax + a - 2 = 0$. Let x_1, x_2 are the roots of the equation. If the equation has a real root \Rightarrow the discriminant $D \ge 0$, and it means that the 2-nd root is real too.

According to Viet's formulas:

$$\begin{cases} x_1 + x_2 = a \\ x_1 x_2 = a - 2 \end{cases} \Rightarrow x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1 x_2 = a^2 - 2(a - 2) = (a - 1)^2 + 3 \ge 3,$$

since $(a-1)^2 \ge 0 \Rightarrow x_1^2 + x_2^2 = 3$ when $(a-1)^2 = 0 \Rightarrow a = 1$ and in this case $D = a^2 - 4(a-2) = 5 > 0$ ⇒ both roots are real.

Answer:
$$a = 1$$
, $min(x_1^2 + x_2^2) = 3$.