MathProblemsBank

1.7.20 Linear transformations

condition: Vectors \( \overline{a_{1}}, \overline{a_{2}}, \ldots \) ​​and vector \( \bar{x} \) are specified by their coordinates in the standard basis. Find the coordinates of the vector \( \bar{x} \) in the basis \( \overline{a_{1}}, \overline{a_{2}}, \ldots \), as well as in the basis \( \overline{b_{1}}, \overline{b_{2}}, \ldots \) if \[ \begin{array}{l} \text { a) } \bar{x}=(12,6,-10) ; \overline{a_{1}}=(-2,-1,4), \overline{a_{2}}=(0-3,0), \\ \overline{a_{3}}=(4,-1,-1), \overline{b_{1}}=4 \overline{a_{1}}+3 \overline{a_{2}}-3 \overline{a_{3}}, \\ \overline{b_{2}}=-3 \overline{a_{1}}-2 \overline{a_{2}}-1 \overline{a_{3}}, \overline{b_{3}}=-3 \overlin

Linear transformations of matrices in the transition between bases, coordinates of vectors and linear operators.

-> Linear transformations