
6.4.6 Graph theory
Problem:
Given a weight matrix \( \Omega \) of graph \( G \). find the value of the minimum path and the path itself from vertex \( v_{1} \) to vertex \( v_{6} \) using Dijkstra's algorithm, and then the value of the maximum path and the path itself between the same vertices.
\[
\left(\begin{array}{cccccc}
- & 2 & \infty & 3 & 4 & \infty \\
\infty & - & 6 & \infty & \infty & \infty \\
\infty & \infty & - & \infty & \infty & 2 \\
\infty & 2 & 4 & - & 3 & 7 \\
\infty & 7 & 5 & \infty & - & 10 \\
\infty & \infty & \infty & \infty & \infty & \infty
\end{array}\right) .
\]