MathProblemsBank

15.1.3 Theory of random processes

Problem: A random process \( X(t)=u \cos t+v e^{t}+t \), is given, where \( u \) and \( v \) are random variables with \( M(u)=M(v)=2 ; \quad D(u)=D(v=0.2) \), \( \operatorname{cov}(u, v)=0,1 \). Find the characteristics of the random process \( Y(t)=2 X^{\prime}(t)-2 \).