MathProblemsBank

1.1.4 Vector Algebra

Problem: Given vectors a=OA,b=OB,c=OC,d=OD. Beams OA,OB and OC are edges of e trihedral angle T. 1) Prove that the vectors a,b,c are linearly independent. 2) Decompose vector d into vectors a,b,c (solve the resulting system of equations using the inverse matrix). 3) Determine whether point D lies inside T, outside T, on one of the boundaries of T (which one?). 4) Determine for what values of the real parameter λ the vector d+λa, plotted from the point O, lies inside the trihedral angle T. a={3;2;1},b={1;1;2},c={2;3;5},d={7;4;1.