
6.3.19 Boolean algebra
Problem:
1. From the table for the Boolean function \( g\left(x_{1}, x_{2}, x_{3}\right) \) write down the Zhegalkin polynomial, perfect DNF and CNF.
2. Draw the Boolean function \( g\left(x_{1}, x_{2}, x_{3}\right) \) on a Boolean cube and find the minimal DNF.
3. Find the minimal DNF for function \( f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \).
4. Examine the completeness of the system \( \{f, g\} \). If the system is not complete, add such a function \( h \), that the system \( \{f, g, h\} \) is complete.
5. Implement functions using a circuit of functional elements in the basis \( \left\{\wedge, \mathrm{v}^{-}\right\} \).
6. Using the functions of one of the bases of 4-th option, express functions \( 0,1, z, \bar{x}, x_{1} x_{2}, x_{1} \vee x_{2}, x_{1} \oplus x_{2} \). Implement them on the same basis with a circuit of functional elements.
7. Construct a contact circuit for the function \( g\left(x_{1}, x_{2}, x_{3}\right) \), presenting it in the form of DNF and CNF.
\[
\begin{array}{l}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0000011001000111), \\
g\left(x_{1}, x_{2} x_{3}\right)=\left(\overline{x_{1}} x_{2} \rightarrow x_{3}\right) \oplus\left(\overline{x_{3}} \leftrightarrow x_{1}\right) .
\end{array}
\]