
14.3.1 Least square method
Problem:
The function \( y=\frac{a}{x}+b x \) is given by the table of the approximate values
\begin{tabular}{|c|c|c|c|c|}
\hline\( x \) & 0.1 & 0.2 & 0.25 & 0.5 \\
\hline\( y \) & \( 29 \cdot N \) & \( 13 \cdot N \) & \( 10 \cdot N \) & \( 2 \cdot N \) \\
\hline
\end{tabular}
where \( N \) is the number of the variant. Determine the coefficients \( a, b \) by the least squares method.
Calculate the value of the root mean square error. Plot the graphs of the function given in the table and the obtained function.
\[
N=2
\]