
2.6.2.30 Trigonometric Fourier series
condition: The coefficient \( a_{15} \) of the Fourier series expansion on the segment \( [-4 ; 4] \) of the function \( f(x)=-5 x^{2}+5 \) is calculated by the formula? 1) \( \frac{1}{4} \int_{-4}^{4}\left(-5 x^{2}+5\right) \sin \left(\frac{15 \pi x}{4}\right) d x \) 2) \( a_{15}=0 \) 3) \( \frac{1}{4} \int_{-4}^{4}\left(-5 x^{2}+5\right) \cos \left(\frac{15 \pi x}{4}\right) d x \) 4) \( \frac{2}{4} \int_{0}^{4}\left(-5 x^{2}+5\right) \cos \left(\frac{15 \pi x}{4}\right) d x \) 5) \( \frac{2}{4} \int_{0}^{4}\left(-5 x^{2}+5\right) \sin \left(\frac{15 \pi x}{4}\right) d x \)
Trigonometric Fourier series - calculation of Fourier coefficients, expansion of functions in cosines and sines, plotting graphs of the sum of the Fourier series using the Dirichlet theorem, as well as graphs of partial sums.