MathProblemsBank

2.6.2.30 Trigonometric Fourier Series

Condition: coefficient \ (a_ {15} \) decomposition in a row Fourier on the segment \ ([-4; 4] \) functions \ (f (x) =-5 x^{2} +5 \) is calculated by the formula? 1) \ (\ frac {1} {4} \ int _ {-4}^{4} \ left (-5 x^{2} +5 \ right) \ sin \ left (\ frac {15 \ pi x} \ right) d x \) 2) \ (( a_ {15} = 0 \) 3) \ (\ frac {1} {4} \ int _ {-4}^{4} \ left (-5 x^{2} +5 \ right) \ cos \ left (\ frac {15 \ pi x} {4} \ right) d x \) 4) \ \ (\ frac {2} {4} \ int_ {0} {4} \ left (-5 x^{2} +5 \ right) \ cos \ left (\ frac {15 \ pi x} {4} \ right) d x \) 5) \ (\ frac {2} {4} \ int_ {0} {4} \ left (-5 x^{2} +5 \ right) \ sin \ left (\ frac {15 \ pi x} {4} \ right) d x \)

Trigonometric Fourier Series - Calculation of Fourier CoEfficents, Expansion of Function in Cosines and Sines, Plotting Graphs of the Sum of the Fourier Sersing Using Using Using USIs. The Dirichlet Theorem, As Well as Graphs of Partial Sums.