
19.3.11 Linear operators
condition: The operator \( A \) maps the space \( E_{1} \) into the space \( E_{2} \). Find the norm of the operator \(A\). Variable replacement operator \begin{tabular}{|c|c|c|} \hline\( E_{1} \) & \( E_{2} \) & \( A \) \\ \hline\( L_{2}[0,1] \) & \( L_{1}[0,1] \) & \( \left(A_{x}\right)(t)=x(\sqrt[4]{t}) \) \\ \hline \end{tabular}