
6.4.23 Graph theory
Problem:
Using the given weight matrix \( \Omega \) of graph \( G \) find the value of the minimum path and the path itself from vertex \( v_{1} \) to the vertex \( v_{7} \) applying the Bellman-Moore algorithm.
\[
\Omega=\left(\begin{array}{ccccccc}
- & 6 & \infty & \infty & 12 & \infty & \infty \\
\infty & - & 4 & 10 & \infty & 15 & \infty \\
\infty & \infty & - & 4 & \infty & \infty & \infty \\
\infty & \infty & \infty & - & \infty & \infty & 6 \\
\infty & -8 & 7 & 11 & - & -6 & \infty \\
\infty & \infty & -8 & 7 & 8 & - & 5 \\
\infty & \infty & \infty & \infty & \infty & \infty & -
\end{array}\right)
\]