
4.8 Variational calculus
Problem:
Let \( M=C[-1 ; 1] \) - the class of the functions \( y(x) \), continuous on segment \( [1 ; 1] \).
Given functional \( I[y(x)]=\int_{-1}^{1} \varphi(x, y) d x \),
where \( \varphi(x, y) \) - is the function, defined and continuous for all \( x \in[-1 ; 1] \) and real \( y \).
For the given function \( \varphi(x, y) \) select couple of functions \( y(x) \) and find the corresponding values of the functional.
\[
\varphi=\frac{x}{2-y^{2}} \text {. }
\]