MathProblemsBank

2.6.2.5 Trigonometric Fourier series

Problem: Expand function \( f(x) \) in a Fourier series in the form of a superposition of simple harmonics, given on the segment line \( [-T / 2, T / 2] \). Plot the amplitude and phase spectra. The values of parameters \( T, h, p \) and \( q \) are given in the table: \begin{tabular}{|c|c|c|c|} \hline\( T \) & \( h \) & \( p \) & \( q \) \\ \hline 2 & 2 & -2 & 1 \\ \hline \end{tabular} \( f(x)=\left\{\begin{array}{cc}h-\frac{2 h}{T} x, & -T / 2 \leq x<0 \\ p, & 0 \leq x