
2.6.2.7 Trigonometric Fourier series
Problem:
Expand function \( f(x) \) into Fourier series in the form of a superposition of simple harmonics, given on the segment line \( [-T / 2, T / 2] \).
Plot:
1. Amplitude and phase spectra;
2. Graphs of partial sums of the Fourier series \( S_{3}(x), S_{10}(x), S_{20}(x), S_{100}(x) \).
The values of parameters \( T, h, p \) and \( q \) are given in the table:
\begin{tabular}{|c|c|c|c|}
\hline\( T \) & \( h \) & \( p \) & \( q \) \\
\hline 2 & -2 & 2 & -1 \\
\hline & \( p \), & \begin{tabular}{l}
\( / 2 \leq \) \\
\( -T / 4 \)
\end{tabular} & \\
\hline & \( 2-\frac{2 l}{T} \) & & \\
\hline
\end{tabular}