
1.5.23 Systems of Algebraic Equations
\ (\ underline {\ mathrm {y} _ {\ text {Sliding:}}} \) Solve the matrix equation using the reverse matrix: \ [a \ cdot x = b, a = \ left (\ begin {array} 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 2 \\ 2 & 2 & -3 \\ 5 & 2 & 7 \ end {Array} \ Right), B = \ LEFT (\ Begin {Array} {CCC} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 \ end {Array} \ Right) \]
Solving Systems of Algebraic Equations by the Methods of Gauss, Jordan-Gauss, Cramer and Using the Inverse Matrix. Homogeneous and non-Homogeneous Systems of Equations.