
15.1.4 Theory of random processes
Problem:
The random process \( X(t) \) is given by the canonical expansion \( \quad X(t)=(t+1) u+\sin t \cdot v+e^{-3 t} \), where \( D(u)=D(v)=3 \).
Find:
a) the characteristics of the random process \( X(t) \);
b) the characteristics of the random process
\[
Y(t)=e^{2 t} \int_{0}^{t} X(\tau) d \tau \text {. }
\]