
9.1.37 Double integrals
Problem:
Determine the sign of the value of the double integral over the region \( G \) :
a) \( \iint_{|x|+|y| \leq 1} \ln \left(x^{2}+y^{2}\right) d x d y, \quad G:\{|x|+|y| \leq 1\} \),
b) \( \iint_{1 \leq x^{2}+y^{2} \leq 4} \ln \left(x^{2}+y^{2}\right) d x d y, \quad G:\left\{1 \leq x^{2}+y^{2} \leq 4\right\} \).