
15.1.11 Theory of random processes
Problem:
A random process \( Y(t)=a t+X \) is given, where \( X \) is a random variable: \( f(x) \sim R[-2 ; 2] \).
Find: \( \quad M[Y(t)], K_{Y}\left(t_{1}, t_{2}\right), D[Y(t)] \), draw the family of trajectories of \( Y(t)=a+X t \).