
15.1.9 Theory of random processes
Problem:
A random process \( Y(t)=a+X t^{2} \) is given, where \( X \) is a random variable: \( f(x) \sim R[0 ; 3] \).
1) Draw the trajectory of \( Y(t) \),
2) Find: \( M[Y(t)], K_{Y}\left(t_{1}, t_{2}\right), D[Y(t)] \).