MathProblemsBank

1. I.18 Linear Spaces

Condition: The vectors in linear space are set. \ [\ begin {array} {l} \ overrightarrow {c_ {1}} = \ left (\ begin {array} {c} 3 a \\ 1 \\ b {arry} \ right); \ overrightarrow {c_ {2}} = \ left (\ begin {array} {c} a \\ 1 \\ -b \\ 2 \ end {array} \ right); \ overrightarrow {c_ {3}} = \ left (\ begin {array} {c} a \\ -1 \\ 3 b \\ -1 \ end {arry} \ right); \ overrightarrow {d_ {1}} = \ left (\ begin {array} {c} 2 a \\ 3 \\ 3 b \\ 2 \ end {array} \ right); \\ \ Overrightarrow {D_ {2}} = \ Left (\ begin {Array} {C} 2 A \\ 3 \\ B \\ 1 \ END {Array} \ RIGHT); \ Overrightarrow {D_ {3}} = \ Left (\ Begin {Array} {C} b \\ 0 \ End {Array} \ Right). \ end {Array} \] Let \ (C \) - linear space stretched on the first three vectors, \ (d- \) by the last three. Find the dimension and basic vectors of the linear space: a) \ (C \); b) \ (C+D \); c) \ (C \ CAP D \).

Linear Spaces, Subspaces. Investigation of Given Sets with Operations Defined on Them to Compose a Linear Space. Axioms of Linear Spaces. Linear Spaces of Polynomials, Matrices, Vectors, Functions and Numbers.