
7.17 Differential geometry
Problem:
For the line \( \vec{\tau}(t)=t^{3} \vec{\imath}+(t+1)^{2} \vec{\jmath}+\sqrt{t^{2}+1} \vec{k} \) find at the point \( t=-2 \) :
a) the unit vector of tangent \( \vec{\tau} \);
b) the unit vector of binormal \( \vec{b} \);
c) the unit vector of principal normal \( \vec{n} \);
d) the curvature \( K \);
e) the equation of the tangent;
f) the equation of the normal plane.