
15.2.24 One dimensional random variables and their characteristics
Problem:
The distribution table of the discrete random variable \( \xi \) has the form:
\begin{tabular}{|c|c|c|c|c|c|}
\hline\( x_{i} \) & \( -\pi / 2 \) & \( -\pi / 6 \) & \( \pi / 2 \) & \( \pi / 6 \) & \( \pi \) \\
\hline\( p_{i} \) & 0.3 & 0.2 & 0.1 & 0.1 & 0.3 \\
\hline
\end{tabular}
1. Make the distribution tables and find the distribution functions for the random variables \( \tau_{i} \), \( i=1,2,3 \), if:
a) \( \tau_{1}=\cos \xi \)
b) \( \tau_{2}=\sin \xi \)
c) \( \tau_{3}=|\sin \xi| \).
2. Calculate the expected values \( E\left[\tau_{i}\right] \) and the dispersions \( V\left[\tau_{i}\right], i=1,2,3 \).