
19.2.1.2 Properties of normed spaces
Problem:
Will the functions
\[
\|\mathrm{x}\|_{1}=\int_{0}^{1}|x(t)| d t \text { and }\|x\|_{2}=\int_{0}^{1} e^{t}|x(t)| d t
\]
be norms on the space \( C([0,1]) \) ?
If yes, will these norms be equivalent on the given space?