MathProblemsBank

1.1.20 Vector Algebra

\( \underline{\text { condition: }} \) Given the coordinates of the vertices of the pyramid \( A B C D \). Required: 1) write the vectors \( \overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D} \) in the orthonormal basis \( \vec{\imath}, \vec{\jmath}, \vec{k} \) 2) find the modules of these vectors; 3) calculate the scalar product \( (\overrightarrow{A B}+\overrightarrow{A C}) \cdot \overrightarrow{A D} \); 4) calculate the vector product \( (\overrightarrow{A B}-\overrightarrow{A C}) \times \overrightarrow{A D} \). \( A(3 ; 3 ;-3), B(7 ; 7 ;-5), C(5 ; 14 ;-13), \quad D(3 ; 5 ;-2) \).

Vector algebra is a branch of algebra that studies linear operations on vectors and their geometric properties. In the section you will find problems on the decomposition of vectors, scalar, vector and mixed products, coordinates of vectors in different bases and much more.

-> Vector Algebra