
1.5.12 Systems of algebraic equations
Problem:
For the given matrix equation
a. Solve it using the Gauss method:
b. Make a substitution check:
c. Solving (by the Gauss method) the equation \( A X=E \); find \( A^{-1} \) :
d. Check the correctness of the answer by calculating \( A^{-1} A \) :
e. Solve the given equation again using \( A^{-1} \), compare the results.
\[
\begin{array}{l}
A=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
83 & -47 & 1 & 0 & 0 \\
-55 & 94 & 0 & 1 & 0 \\
62 & -71 & 0 & 0 & 1
\end{array}\right), \\
B=\left(\begin{array}{ccccc}
2 & -3 & 4 & -1 & 0 \\
4 & -2 & 1 & 0 & 3
\end{array}\right), \quad X A=B .
\end{array}
\]