
1.5.20 Systems of Algebraic Equations
Condition: using the Hordan-Gaussian method, to investigate the compatibility of the system of equations and, if it is joint, then find a solution. If the system is uncertain, then find two general and corresponding basic solutions. \ [\ left \ {\ begin {array} {c} 3 x_ {1} +4 x_ {2} +3 x_ {3} +10 x_ {4} +17 x_ \\ 3 x_ {1} +5 x_} +3 x_ {3} +111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111IA +1I1111111111111111111111111111111111111111111IA +1IRAST x_ {4} +19 x_ {5} = 22 \\ 6 x_ {1} +8 x_ {2}+x_ {3} +15 x_ {4} +24 x_ {5} = 25 \ end {array} \ right. \]
Solving Systems of Algebraic Equations by the Methods of Gauss, Jordan-Gauss, Cramer and Using the Inverse Matrix. Homogeneous and non-Homogeneous Systems of Equations.