
11.5.3.8 With variable coefficients
Problem:
Find the solution of the second order linear equation, satisfying the given initial conditions (the Cauchy problem):
\[
\begin{array}{l}
u_{x x}+2 \sin x \cdot u_{x y}-\cos ^{2} x \cdot u_{y y}+u_{x}+ \\
+(\sin x+\cos x+1) u_{y}=0, \\
\left.u(x, y)\right|_{y=-\cos x}=1+2 \sin x, \\
\left.u_{y}(x, y)\right|_{y=-\cos x}=\sin x .
\end{array}
\]