Math Problems Bank
Home
Forum
About Us
Contact Us
Login
Register
6.6.48 Combinatorics
Condition: determine \ (a^{n}: a^{1} = A \ Weedge a^{K+1} = A^{K} \ CDOT A \). Prove: a) \ (a^{m+n} = a^{m} \ cdot a^{n} \), b) \ ((a \ cdot b)^{m} = a^\ cdot b^{m} \).
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?