
3.3.7 Line and plane in space
Problem:
By the coordinates of the vertices of the pyramid \( A_{1} A_{2} A_{3} A_{4} \) find: 1) the length of the edge \( A_{1} A_{2} ; 2 \) ) the angle between the edges \( A_{1} A_{3} \) and \( \left.A_{1} A_{4} ; 3\right) \) the angle between the faces \( A_{1} A_{2} A_{3} \) and \( \left.A_{1} A_{2} A_{4} ; 4\right) \) the equation of the straight line passing through the vertices \( A_{4} \) and the center of gravity of the face \( \left.A_{1} A_{2} A_{3} ; 5\right) \) the length and the equation of the height from the vertex \( A_{4} \) to the face \( \left.A_{1} A_{2} A_{3} ; 6\right) \) the distance between the crossing edges \( A_{1} A_{2} \) and \( A_{3} A_{4} \).
\[
A_{1}(1 ; 1 ;-1), \quad A_{2}(2 ; 3 ; 1), \quad A_{3}(3 ; 2 ; 1), \quad A_{4}(5 ; 9 ;-8) \text {. }
\]