
10.1.24 Integral of a complex variable
Problem:
Appropriately applying the Cauchy residue theorem, calculate the following integrals along the boundaries of infinite domains:
\[
\int_{\partial \Omega} \frac{e^{z}}{\sinh 2 z} d z \text {, where } \Omega=\left\{-\frac{\pi}{4}<\operatorname{Im} z<\frac{\pi}{4}\right\} \text {. }
\]