MathProblemsBank

1.4.16 Matrix Transformations

Condition: a) Check the validity of equality \ ((n \ cdot p)^{t} = p^{t} \ cdot n^{t} \) for matrices: \ [n = \ bein {array} {lll} 0 & -3 & -2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \ end {Array} \ Right), P = \ LEFT (\ BEGIN {Array} {CC} -1 & 1 \\ 0 & 1 \\ 2 \ END {Array} \ RIGHT) \] B) Is it true that if a work of matrix \ (C \ cdot d \) defined, then \ (\ left (d^{t} \ cdot c^{t} \ right)^{t} = c \ cdot d \), justify the answer.

Matrix Transformations - Inverse Matrix Calculation and More