
15.2.34 One dimensional random variables and their characteristics
Problem:
Let \( \xi_{1}, \cdots, \xi_{n} \) are independent identically distributed random variables, with finite dispersion \( \sigma^{2} \). Let's designate
\[
\bar{\xi}=\frac{\xi_{1}+\cdots+\xi_{n}}{n} .
\]
Find the expected value of the random variable
\[
\frac{1}{n-1} \sum_{k=1}^{n}\left(\xi_{k}-\bar{\xi}\right)^{2} .
\]