
15.1.29 Theory of random processes
Problem:
Let the random function \( X(t) \) have the characteristics \( \quad m_{x}(t)=1, K_{x}(t, s)=e^{-(t-s)^{2}} \). Find the characteristics of the random functions
\[
\begin{array}{l}
Y=1+t-x, Z=t^{2}+x^{\prime} \sin t, U=t+x^{\prime \prime}, \\
V=\int_{0}^{t}(1+t) X(t) d t .
\end{array}
\]
Find out wheter the functions \( X, Y, Z, U, V \) are stationary.