
11.5.1.1 d'Alembert method
Problem:
Solve the problem of oscillations of an infinite string using the d'Alembert method.
\[
\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}, \\
\left.u(x, t)\right|_{t=0}=\sin \frac{x}{2},\left.\frac{\partial u}{\partial t}\right|_{t=0}=\cos \frac{x}{2},-\infty