MathProblemsBank

1.7.21 Linear Transformations

Condition: Vector systems \ (\ left \ {\ overline {a_ {1}}, \ overLine {a_ {2}}, \ ldots \ right \}, \ left \ {\ overLine {b_ {1}}, \ overLine {b_ {2}}, \ ldots \ right \} \) the coordinates in the standard basis \ (\ left {\ overline {e_ {1}}, \ overLine {e_ {2}, {e_ {2}, \ overLine. \ ldots \ right \} \). Find the matrix of linear transformation \ (\ Phi \) in the bases \ ( \ left \ {\ overLine {e_ {i} \ right \}, \ left \ {\ overlin e {b_ {i}} \ right \}, \ left \ {\ overLine {c_}} \ right \} \), if in the basis \ (\ left \ {\ overline {a_ {i}} \ right \} \) it has the form A) \ (\ begin {array} {cc} -3 \ \ -4 &4 & 1 \ end {Array} \ Right) \), moreover, \ (\ overLine {A_ {1}} = (-1.0), \ overLIN

Linear Transformations of Matrices in the Transition Between Bases, Coordinates of Vectors and Linear Operators.