
15.1.20 Theory of random processes
Problem:
The random function \( X(t) \) is given by the canonical expansion \( X(t)=U \cdot e^{-t}+V \sin t+4 W \), where \( D_{U}=1, D_{V}=2, D_{W}=0,7 \).
Find the characteristics of the random function \( Y(t): m_{Y}(t), K_{Y}\left(t_{1}, t_{2}\right), D_{Y}(t) \), where
\[
Y(t)=2 X(t)+3 \int_{0}^{t} \tau X(\tau) d \tau \text {. }
\]