
9.4.15 Curvilinear integrals
31
Problem:
Calculate the line integral of the \( 1^{\text {st }} \) kind along the space curve:
\[
\int_{\Gamma}\left(x^{2}+y^{2}+z^{2}\right) d l
\]
where \( \Gamma \) is the first turn of the helix:
\[
\left\{\begin{array}{c}
x=a \cos t \\
y=a \sin t, \quad a>0, b>0 . \\
z=b t
\end{array}\right.
\]