
9.8.8 Surface integrals
Problem:
Calculate the surface integral of the \( 2^{\text {nd }} \) kind:
\[
\iint_{S} x^{3} d y d z+y^{3} d z d x
\]
where \( S \) is the outside of the ellipsoid part
\[
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1, \quad z \geq 0 .
\]