
15.5.15 Two-dimensional random variables and their characteristics
Problem:
The distribution table of the two-dimensional discrete random vector \( \eta=\left(\xi_{1}, \xi_{2}\right)^{T} \) is given:
\begin{tabular}{|c|c|c|c|}
\hline\( y_{j} \) & -2 & 0 & 2 \\
\hline\( x_{i} \) & & & \\
\hline-3 & \( 1 / 8 \) & \( \mathrm{c} \) & \( 7 / 24 \) \\
\hline 3 & \( 5 / 24 \) & \( 1 / 6 \) & \( 1 / 8 \) \\
\hline
\end{tabular}
1. Find the constant \( c \) and partial distribution laws of the random variables \( \xi_{1} \) and \( \xi_{2} \).
2. Calculate the expected values \( E\left[\xi_{1}\right], E\left[\xi_{2}\right] \) and the dispersions \( V\left[\xi_{1}\right], V\left[\xi_{2}\right] \), as well as the moment of correlation \( V_{\xi_{1} \xi_{2}} \) and the correlation coefficient \( \rho_{\xi_{1} \xi_{2}} \).
3. Will the random variables be independent?
4. Make the distribution table of the new random vector \( \eta_{1}=\left(\tau_{1}, \tau_{2}\right)^{T} \), where \( \tau_{1}=\xi_{1}+\xi_{2}, \tau_{2}=\xi_{1} \xi_{2} \).
5. Find \( E\left[\eta_{1}\right] \) and the covariance matrix \( V_{\eta_{1}} \).