MathProblemsBank

9.8.3 Поверхностные интегралы

условие: Вычислить интеграл, используя формулу Стокса. \( \int_{\Gamma} x y z d x+y^{2} z d y+z x^{2} d z \), где \( \Gamma- \) кривая: \[ \left\{\begin{array}{l} x^{2}+z^{2}=a^{2}, a>0 \\ y^{2}+z^{2}=a^{2}, x \geq 0 \end{array}\right. \] положительно ориентированная на внешней стороне первого цилиндра.