
11.3.2 Convolution of functions
Problem:
Find the convolution of the functions \( f(x) \) and \( g(x) \), if the function \( f(x) \) takes a value, equal to zero, when \( x \notin[-1,4] \), and when \( x \in[-1,4] \) its graph consists of links of the broken-line \( A B C D \) :
\[
\begin{array}{l}
A(-1,0), B(1,2), C(2,-2), D(4,-2), \\
g(x)=\left\{\begin{array}{cc}
0, & x<0 \\
1, & 0 \leq x<1 \\
0, & x \geq 1
\end{array}\right.
\end{array}
\]