MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: For the given functions \( \varphi \) and \( \psi \) : a) plot the graph of the functions \( \varphi \) and \( \psi \); b) calculate the convolution \( \varphi * \psi \) of the functions \( \varphi \) and \( \psi \); c) plot the graph of the convolution \( \varphi * \psi \). The function \( \varphi \) is given by the formula, the graph of the function \( \psi \) is broken-line, connecting the points \( A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right), D\left(x_{4}, y_{4}\right) \) (outside the segment \( \left[x_{1}, x_{4}\right] \) the function is equal to zero). \[ \varphi(x)=\operatorname{rect} x=\eta\left(\frac{1}{2}-|x|\right)=\left\{\begin{array}{c} 1,-\frac{1}{2}\frac{1}{2} \end{array}\right. \] where \( \eta(t)=\left\{\begin{array}{l}0, t<0 \\ 1, t \geq 0\end{array}\right. \) is Heaviside step function \[ \begin{array}{l} A(-2,0), B(-1,2), C(1,2), D(2,0), \quad \psi: A B C D \text { (broken - line), } \\ \psi(x)=0 \text { when } x \notin[-2,2] . \end{array} \]

11.3.1 Convolution of functions

10.28 $

Problem: Find the convolution of the functions \( f(x) \) and \( g(x) \), if the function \( f(x) \) takes a value, equal to zero, when \( x \notin[-1,4] \), and when \( x \in[-1,4] \) its graph consists of links of the broken-line \( A B C D \) : \[ \begin{array}{l} A(-1,0), B(1,2), C(2,-2), D(4,-2), \\ g(x)=\left\{\begin{array}{cc} 0, & x<0 \\ 1, & 0 \leq x<1 \\ 0, & x \geq 1 \end{array}\right. \end{array} \]

11.3.2 Convolution of functions

7.71 $

Problem: For piecewise constant functions \( f(x) \) and \( g(x) \) of the form \[ \begin{array}{c} f(x)=\left\{\begin{array}{cc} 0, & x<-1 \\ 1, & -1 \leq x<0 \\ -2, & 0 \leq x<2 \\ 0, & x \geq 2 \end{array}\right. \\ g(x)=\left\{\begin{array}{cc} 0, & x<0 \\ 1, & 0 \leq x<1 \\ -2, & 1 \leq x<3 \\ 0, & x \geq 3 \end{array}\right. \end{array} \] find the cross-covariance and cross-correlation functions.

11.3.3 Convolution of functions

8.99 $

Problem: Find the convolution of the functions \( f(x) \) and \( g(x) \), if the function \( f(x) \) takes a value, equal to zero, when \( x \notin\left[x_{1} ; x_{4}\right] \), and when \( x \in\left[x_{1} ; x_{4}\right] \) its graph consists of links of the broken-line \( A B C D \) : \[ \begin{array}{l} A\left(x_{1} ; 0\right), \quad B\left(x_{2} ; a\right), \quad C\left(x_{3} ; b\right), \quad D\left(x_{4} ; b\right) . \\ x_{1}=-2, \quad x_{2}=1, \quad x_{3}=3, \quad x_{4}=4, \quad a=2, \quad b=-1 . \end{array} \] The function \( g(x) \) has the form \[ g(x)=\left\{\begin{array}{ll} 0, & x<0 \\ 1, & 0 \leq x<1 \\ 0, & x \geq 0 \end{array}\right. \]

11.3.4 Convolution of functions

7.71 $

Problem: For the piecewise-constant functions \( f(x) \) and \( g(x) \) of the form \[ y(x)=\left\{\begin{array}{ll} 0, & x

11.3.5 Convolution of functions

8.99 $

Problem: Find the convolution of the functions \( f(x) \) and \( g(x) \), if the function \( f(x) \) takes the value, equal to zero, when \( x \notin\left[x_{1} ; x_{4}\right] \), and when \( x \in\left[x_{1} ; x_{4}\right] \) its graph consists of links of the broken-line \( A B C D \) : \[ \begin{array}{l} A\left(x_{1} ; a\right), \quad B\left(x_{2} ; a\right), \quad C\left(x_{3} ; b\right), \quad D\left(x_{4} ; 0\right) . \\ x_{1}=-1, \quad x_{2}=1, \quad x_{3}=4, \quad x_{4}=6, \quad a=-1, \quad b=2 . \end{array} \] The function \( g(x) \) has the form \[ g(x)=\left\{\begin{array}{ll} 0, & x<0 ; \\ 1, & 0 \leq x<1 ; \\ 0, & x \geq 0 . \end{array}\right. \]

11.3.6 Convolution of functions

7.71 $

Problem: For piecewise-constant functions \( f(x) \) and \( g(x) \) of the form \[ y(x)=\left\{\begin{array}{ll} 0, & x

11.3.7 Convolution of functions

8.99 $

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login