MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Find the distribution of the concentration of the diffusing substance in an infinite layer \( 0 \leq x \leq \ell \), \( -\infty

11.5.2.1 Fourier method

6.42 $

Problem: The diffusing substance with concentration \( C_{0}= \) const is in an infinite layer \( -h \leq x \leq h,-\infty< \) \( y, z<+\infty \) and are kept there by impenetrable partitions, located at \( \pm h \) until the \( t=0 \) moment of time, when the partitions are removed and the diffusion process in a wider layer begins \( -H \leq x \leq \) \( H(H>h) \). Find the distribution of the concentration of the diffusing substance when \( t>0 \), if on the surfaces \( x= \pm H \) there is a mass exchange with the environment, having a constant concentration of the diffusing substance \( C_{1} \).

11.5.2.2 Fourier method

6.42 $

Problem: Find the temperature distribution \( u(r ; t) \) inside the ball \( r \leq l \), if the initial temperature distribution inside the ball \( \varphi(r) \) is given. \begin{tabular}{|c|c|} \hline\( \left.u\right|_{l} \) & \( \left.u\right|_{t=0}=\varphi \) \\ \hline\( \left.u\right|_{r=l}=0 \) & \( \left.u\right|_{t=0}=\frac{A}{l}\left(\frac{r^{2}}{12 l^{2}}-\frac{r}{4 l^{2}}\right) \) \\ \hline \end{tabular}

11.5.2.3 Fourier method

7.71 $

Problem: Solve the wave equation on the given segment, with the boundary conditions \( V(0, t)==V(l, t)=0 \) and given initial conditions, using the Fourier method: \[ \begin{array}{l} V_{t t}^{\prime \prime}=121 V_{x x}^{\prime \prime} \\ V(x, 0)=\left\{\begin{array}{l} \frac{x}{7}, \quad 0 \leq x \leq 14 \\ \frac{28-x}{7}, \quad 14 \leq x \leq 28 \end{array} \quad V_{t}^{\prime}(x, 0)=0 .\right. \end{array} \]

11.5.2.4 Fourier method

7.71 $

Problem: Solve the equation \( u_{x x}-\frac{1}{a^{2}} u_{t t}=0,(0 \leq x \leq l) \) under the given initial and boundary conditions. \begin{tabular}{|c|c|c|c|} \hline\( u(0, t) \) & \( u(l, t) \) & \( u(x, 0) \) & \( u_{t}^{\prime}(x, 0) \) \\ \hline 0 & 0 & \( 3 \sin \frac{5 \pi}{l} x \) & \( 7 x \) \\ \hline \end{tabular}

11.5.2.5 Fourier method

7.71 $

Problem: Solve the boundary-value problem for the homogeneous wave equation: \[ \begin{array}{l} u_{t t}=a^{2} u_{x x}, \quad a=1, \quad u(0, x)=\frac{x}{2}, \\ \frac{\partial u}{\partial t}(0, x)=u(t, 0)=u(t, l)=0 . \end{array} \]

11.5.2.6 Fourier method

3.34 $

Problem: Solve the boundary-value problem for the homogeneous wave equation: \[ \begin{array}{l} u_{t t}=a^{2} u_{x x}, \quad a=2, \quad u(x, 0)=2 \cos \frac{5}{2} x, \\ \frac{\partial u}{\partial t}(0, x)=u(t, 0)=u(t, l)=0 . \end{array} \]

11.5.2.7 Fourier method

3.34 $

Problem: Solve the boundary-value problem for the homogeneous wave equation: \[ \begin{array}{l} u_{t t}=a^{2} u_{x x}, \quad a=3, \quad u(0, x)=x+2, \\ \frac{\partial u}{\partial t}(0, x)=u(t, 0)=u(t, l)=0 . \end{array} \]

11.5.2.8 Fourier method

3.34 $

Problem: Solve the boundary-value problem for the homogeneous wave equation: \[ \begin{array}{l} u_{t t}=a^{2} u_{x x}+t^{2} x^{2}, \\ a=3.5, u(x, 0)=\frac{\partial u}{\partial t}(0, x)=u(t, 0)=u(t, l)=0 . \end{array} \]

11.5.2.9 Fourier method

3.85 $

Problem: Solve the boundary-value problem for the homogeneous wave equation: \[ \begin{array}{l} u_{t t}=a^{2} u_{x x}+t, \quad a=1.5 \\ u(x, 0)=\frac{\partial u}{\partial t}(0, x)=u(t, 0)=u(t, l)=0 . \end{array} \]

11.5.2.10 Fourier method

3.85 $

Problem: Solve the boundary-value problem for the inhomogeneous wave equation: \[ \begin{array}{l} u_{t t}=a^{2} u_{x x}+t^{2} x, \quad a=2, \\ u(0, x)=\frac{\partial u}{\partial t}(0, x)=u(t, 0)=u(t, l)=0 . \end{array} \]

11.5.2.11 Fourier method

4.37 $

Problem: Find the solution of the Cauchy problem for the heat equation: \[ \begin{array}{l} u_{t}=4 u_{x x}, \\ u(x, 0)=15 \sin 3 \pi x, u(0, t)=0, u_{x}(4.5, t)=0 . \end{array} \]

11.5.2.12 Fourier method

5.14 $

Problem: Find the solution of the Cauchy problem for the heat equation: \[ \begin{array}{l} u_{t}=4 u_{x x}, \\ u(x, 0)=5 \sin 3 \pi x, \quad u(0, t)=u(6, t)=0 . \end{array} \]

11.5.2.13 Fourier method

4.37 $

Problem: Find the solution of the Cauchy problem for the heat equation: \[ \begin{array}{l} u_{t}=8 u_{x x}, \quad u(x, 0)=5 \cos 2 \pi x+6 \cos 3 \pi x, \\ u_{x}(0, t)=u_{x}(6, t)=0, \quad a=\sqrt{8}=2 \sqrt{2}, \quad l=6 . \end{array} \]

11.5.2.14 Fourier method

5.14 $

Problem: Find the solution of the Cauchy problem for the string oscillation equation: \[ \begin{array}{ll} u_{t t}=25 u_{x x}, & u(x, 0)=5 \sin 3 \pi x, \\ u_{t}(x, 0)=0, & u(0, t)=u(3, t)=0 . \end{array} \]

11.5.2.15 Fourier method

3.08 $

  • ‹
  • 1
  • 2
  • 3
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login