MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Solve the mixed problem: \[ \begin{array}{l} u_{t t}=u_{x x}+5 u+t, 00, \\ \left.u\right|_{x=0}=0,\left.u\right|_{x=\pi}=0, \\ \left.u\right|_{t=0}=\sin 4 x,\left.u_{t}\right|_{t=0}=0 . \end{array} \]

11.5.5.1 Mixed problems

7.71 $

Problem: Solve the mixed problem: \[ \left\{\begin{array}{c} u_{t t}=u_{x x}+t^{2} x, \quad t>0 \\ \left.u\right|_{t=0}=x^{2},\left.\quad u_{t}\right|_{t=0}=0 \end{array}\right. \]

11.5.5.2 Mixed problems

3.08 $

Problem: Solve the mixed problem: \[ \left\{\begin{array}{c} u_{t t}=u_{x x}+6 t, \quad t>0, \quad x>0 \\ \left.u\right|_{t=0}=2 x,\left.\quad u_{t}\right|_{t=0}=0,\left.\quad u\right|_{\chi=0}=t^{3} \end{array}\right. \]

11.5.5.3 Mixed problems

3.85 $

Problem: Solve the mixed problem, using the Fourier method: \[ \left\{\begin{array}{l} u_{t}=u_{x x}, 00 \\ u(x, 0)=\cos ^{4} x-\sin ^{4} x \\ u(0, t)=u_{x}(\pi, t)=0 \end{array}\right. \]

11.5.5.4 Mixed problems

7.71 $

Problem: Solve the problem with stationary inhomogeneities using the Fourier method: \[ \begin{array}{ll} u_{t t}=u_{x x}+6 x, & u(x ; 0)=\sin ^{2} x-x^{3}, \\ u_{t}=(x ; 0)=0, & u(0 ; t)=0, \quad u(\pi ; t)=-\pi^{3} . \end{array} \]

11.5.5.5 Mixed problems

6.42 $

Problem: Find the solution of the mixed problem: \[ \begin{array}{l} u_{t}=\frac{1}{36} u_{x x}+17 \cos 4 t \cdot \sin 6 x \\ u(x, 0)=5 \sin 18 x, \quad u(0, t)=u(\pi, t)=0 . \end{array} \]

11.5.5.6 Mixed problems

7.71 $

Problem: Find the solution of the mixed problem: \[ \begin{array}{l} u_{t}=\frac{1}{25} u_{x x}+17 \sin 4 t \sin 5 x \\ u(x, 0)=5 \sin 15 x+3 \pi-2 x, u(0, t)=3 \pi, u(\pi, t)=\pi \end{array} \]

11.5.5.7 Mixed problems

7.71 $

Problem: Find the solution of the mixed problem: \[ \begin{array}{l} u_{t t}=16 u_{x x}, u(0, t)=-4, u(1, t)=-1, \\ u(x, 0)=5 \sin 2 \pi x-4+3 x, \quad u_{t}(x, 0)=0 . \end{array} \]

11.5.5.8 Mixed problems

5.14 $

Problem: Find the solution of the mixed problem: \[ \begin{array}{l} u_{t t}=\frac{1}{16} u_{x x}+50 e^{-7 t} \cdot \sin 4 x, \\ u(x, 0)=u_{t}(x, 0)=0, \quad u(0, t)=u(\pi, t)=0 . \end{array} \]

11.5.5.9 Mixed problems

6.42 $

Problem: Find the solution of the mixed problem: \[ \left\{\begin{array}{l} u_{t}=u_{x x}+u-x+2 \sin 2 x \cos x, \quad u=u(x, t) \\ 0

11.5.5.10 Mixed problems

10.28 $

Problem: Solve the problem of longitudinal oscillations of a rod suspended by the end \( \mathrm{x}=0 \) (the end \( x=l \) is free), performed under the influence of gravity.

11.5.5.11 Mixed problems

8.99 $

Problem: A thin homogeneous rod is given \( 0

11.5.5.12 Mixed problems

8.99 $

Problem: Find the solution of the mixed problem: \[ \begin{array}{l} u_{t}=9 u_{x x}, \quad u(x, 0)=9 \sin 3 \pi x-5+2 x, \\ u(0, t)=-5, \quad u(3, t)=1 . \end{array} \]

11.5.5.13 Mixed problems

6.42 $

Problem: Find the solution of the mixed problem: \[ \begin{array}{l} u_{t}=\frac{1}{16} u_{x x}+10 \sin 3 t \cdot \sin 4 x, \quad u(x, 0)=0, \\ u(0, t)=0, \quad u(\pi, t)=0 . \end{array} \]

11.5.5.14 Mixed problems

6.42 $

Problem: Solve the external Dirichlet boundary-value problem for the circle: \[ \begin{array}{l} \Delta u(r, \varphi)=0, \quad r>r_{0}, \quad 0 \leq \varphi<2 \pi, \\ |u(r, \varphi)|<+\infty, \quad u\left(r_{0}, \varphi\right)=\frac{u_{0} \sin \varphi}{25+7 \cos \varphi} . \end{array} \]

11.5.5.15 Mixed problems

10.28 $

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login