MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Investigate the continuity of the function \( F(y) \) on the set \( Y \) : \[ F(y)=\int_{0}^{\frac{\pi}{2}} \frac{d x}{x y-\sin x+1}, \quad Y=(0 ;+\infty) . \]

9.2.16 Integrals depending on a parameter

2.03 $

Problem: Using the Dirichlet/Frullani/Fresnel/Euler/Poisson/Laplace integrals, calculate the following integral: \[ I=\int_{0}^{+\infty} \frac{\cos ^{2} \alpha x}{\alpha^{2}+x^{2}} d x, \quad \alpha>0 . \]

9.2.17 Integrals depending on a parameter

3.3 $

Problem: Using the Dirichlet/Frullani/Fresnel/Euler/Poisson/Laplace integrals, calculate the following integral: \[ I=\int_{0}^{+\infty} \frac{\sin x-x \cos x}{x^{3}} d x . \]

9.2.18 Integrals depending on a parameter

4.32 $

Problem: Using the Euler integrals calculate the integral: \[ I=\int_{0}^{+\infty} \frac{\ln x}{\sqrt[3]{x}(x+2)} d x \]

9.2.19 Integrals depending on a parameter

3.81 $

Problem: Determine the domain of existence and express the following integral in terms of the Euler integrals: \[ I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)^{\cos 2 \alpha} d x \]

9.2.20 Integrals depending on a parameter

6.35 $

Problem: Prove the equality: \[ I=\int_{0}^{\frac{\pi}{2}} \sin ^{\rho} x d x \cdot \int_{0}^{\frac{\pi}{2}} \frac{d x}{\sin ^{\rho} x}=\frac{\pi}{2 \rho} \tan \frac{\pi \rho}{2}, \quad 0<\rho<1 . \]

9.2.21 Integrals depending on a parameter

5.08 $

Problem: Using differentiation or integration with respect to the parameter, calculate the improper integral. \[ \int_{0}^{\infty} \frac{\tan ^{-1} r x}{x\left(1+x^{2}\right)} d x, \quad(r \geq 0) . \]

9.2.22 Integrals depending on a parameter

5.08 $

Problem: Find the Laplace transform of the periodic function: \[ f(t)=B|\sin \omega t| . \]

9.2.23 Integrals depending on a parameter

3.05 $

Problem: Determine the region of existence of the improper integral and express it in Euler integrals. \[ \int_{0}^{1} \ln ^{\mathrm{p}} \frac{1}{x} d x . \]

9.2.24 Integrals depending on a parameter

2.03 $

Problem: Prove the convergence of the integral and find its value. \[ \int_{0}^{1} \sin \left(\ln \frac{1}{x}\right) \cdot \frac{x^{b}-x^{a}}{\ln x} d x, \quad a>0, b>0 . \]

9.2.25 Integrals depending on a parameter

5.08 $

Problem: Using the Dirichlet/Frullani/Fresnel/Euler/Poisson/Laplace integrals, calculate the following integral: \[ I=\int_{0}^{+\infty} \frac{\alpha \sin x-\sin \alpha x}{x^{2}} d x, \quad \alpha>0 . \]

9.2.26 Integrals depending on a parameter

3.81 $

Problem: Investigate the uniform convergence of the integral on the set \( Y \). \[ \int_{0}^{\infty} \frac{x d x}{1+(x-\alpha)^{4}}, \quad Y=(-\infty ; b], \quad b>0 . \]

9.2.28 Integrals depending on a parameter

2.54 $

Problem: Investigate the uniform convergence of the integral on the set \( Y \). \[ \int_{0}^{\infty} e^{-\alpha x} \tan ^{-1}\left(\alpha x^{2}\right) d x, \quad Y=[0 ;+\infty) . \]

9.2.29 Integrals depending on a parameter

2.54 $

Problem: Investigate the uniform convergence of the integral on the set \( Y \). \[ \int_{0}^{1} \frac{x^{2} \alpha-\alpha^{3}}{\sqrt{x}\left(\alpha^{2}+x^{2}\right)^{2}} d x, \quad Y=(0 ; 1) . \]

9.2.30 Integrals depending on a parameter

2.54 $

Problem: Investigate the integral over the parameter for uniform convergence: \[ \int_{0}^{1} \sin \left(x^{a}(\ln x)^{2}\right) d x, \quad a \leq a_{0}<1 . \]

9.2.27 Integrals depending on a parameter

1.52 $

  • ‹
  • 1
  • 2
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login