MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Examine the function for an extremum: \[ z=y \sqrt{x}-y^{2}-x+6 y . \]

2.11.1 Function extrema

1.27 $

Problem: Determine the largest and smallest values of the function \( z=x^{2}-y^{2} \) in the domain \( x^{2}+y^{2} \leq 1 \).

2.11.2 Function extrema

1.27 $

Problem: Determine the largest and smallest values of a function \( f(x)=2 x^{2}+\frac{2}{x} \) in \( \left[\frac{1}{2} ; 1\right] \).

2.11.3 Function extrema

1.27 $

Problem: Find the points of local extrema of the function \[ z=x^{3}-y^{3}-3 x y . \]

2.11.4 Function extrema

1.27 $

Problem: Find the rectangle with the largest area inscribed in a circle of radius \( R \).

2.11.5 Function extrema

3.05 $

Problem: Find local extrema of the function \[ z=x^{4}+y^{4}-4 x y \text {. } \]

2.11.6 Function extrema

1.27 $

Problem: Among rectangular parallelepipeds with a given volume \( V \) find the one, having the smallest total surface.

2.11.7 Function extrema

3.81 $

Problem: A function of three variables is given: \( f\left(x_{1}, x_{2}, x_{3}\right) \). a) Find the stationary point of function \( f\left(x_{1}, x_{2}, x_{3}\right) \), calculate the value of the function and the gradient at it. (Indicate the method for solving the system of equations). b) Determine the extremums of function \( f\left(x_{1}, x_{2}, x_{3}\right) \), if there are any. \[ \begin{array}{l} f\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2}+8 x_{2}^{2}+13 x_{3}^{2}-4 x_{1} x_{2}- \\ -8 x_{1} x_{3}-6 x_{2} x_{3}-55 x_{1}-18 x_{2}-21 x_{3} . \end{array} \]

2.11.8 Function extrema

3.05 $

Problem: Function \( f\left(x_{1}, x_{2}, x_{3}\right) \) and its constraints are given. a) Compose the Lagrange function; b) Determine the stationary point of the Lagrange function; c) Determine the extremums of function \( f\left(x_{1}, x_{2}, x_{2}\right) \), if there are any. \[ \begin{array}{l} f\left(x_{1}, x_{2}, x_{3}\right)=15 x_{1}^{2}+7 x_{2}^{2}+10 x_{3}^{2}+20 x_{1} x_{2}+ \\ +x_{1} x_{3}+3 x_{2} x_{3}+10 x_{1}-25 x_{2}-20 x_{3}, \\ 11 x_{1}+20 x_{2}+10 x_{3}=300, \\ 21 x_{1}+60 x_{2}+x_{3}=270 . \end{array} \]

2.11.9 Function extrema

3.05 $

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login