MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

(3) Problem: Find the arc length of the curve which is specified parametrically: \[ L: r=2 \cos ^{3} \frac{\varphi}{3}, \varphi \in\left[0 ; \frac{3 \pi}{2}\right] \]

9.4.1 Curvilinear integrals

1.02 $

(3) Problem: Find the mass of the curve, given parametrically: \( \ell: y=\ln \cos x, x \in\left[0 ; \frac{\pi}{3}\right] \), density \( \rho=e^{y} \).

9.4.2 Curvilinear integrals

1.02 $

(a) Problem: Calculate the line integral from point \( A \) to point \( C \) along three different paths: \[ \begin{array}{l} A(0 ; 1), \quad B(3 ; 1), \quad C(3 ; 10) \\ I=\int_{\ell}(2 y+x) d x+(2 x-1) d y \end{array} \]

9.4.3 Curvilinear integrals

2.56 $

T Problem: Calculate the line integral of the 2nd kind using Green's formula. \[ \oint_{C}\left(x^{3}-2 y\right) d x+\left(y^{3}-x\right) d y \] where \( C: x=1, y^{2}=x \).

9.4.11 Curvilinear integrals

1.28 $

(3) Problem: Calculate the line integral: \[ \int_{L}\left(x^{5}+8 x y\right) d L, \text { where } L: 4 y=x^{4}, 0 \leq x \leq 1 . \]

9.4.4 Curvilinear integrals

1.28 $

3 Problem: Calculate the line integral: \[ \int_{L} \sqrt{\frac{a^{2}}{b^{2}} y^{2}+\frac{b^{2}}{a^{2}} x^{2}} d L \] where \( L:\left\{\begin{array}{l}x=a \cos t \\ y=b \sin t\end{array}, \quad 0 \leq t \leq \frac{\pi}{2}\right. \).

9.4.5 Curvilinear integrals

1.28 $

(2) Problem: Calculate the line integral: \[ \int_{L}(x+y) d L, \text { where } L \text { is the petal of the } \] lemniscate located in the first quadrant.

9.4.6 Curvilinear integrals

2.56 $

3) Problem: Calculate the line integral using the polygonal \( L \) : \[ \int_{L}\left(x^{3}+y\right) d x+\left(x+y^{2}\right) d y \] where 1) \( L: A B C, 2) L: A B C A, A(7 ; 7), B(3 ; 7), C(3 ; 5) \).

9.4.7 Curvilinear integrals

1.79 $

Problem: Calculate the line integral: \( L:\left\{\begin{array}{c}x=t^{2} \\ y=t\end{array}, \quad 1 \leq t \leq 2, \quad \int_{L} y x d x+y^{2} d y\right. \).

9.4.8 Curvilinear integrals

1.02 $

(3) Problem: Calculate the line integral over the closed polygonal \( A B C D A \) using Ostrogradsky-Green formula: \[ \begin{array}{l} A(3 ; 2), \quad B(6 ; 2), \quad C(6 ; 4), \quad D(3 ; 4) \\ \oint_{L} \sqrt{x^{2}+y^{2}} d x+y\left[x y+\ln \left(x+\sqrt{x^{2}+y^{2}}\right)\right] d y \end{array} \]

9.4.9 Curvilinear integrals

2.56 $

T Problem: Calculate the arc length of the curve given in Cartesian coordinates: \[ x=\ln \cos y, \quad 0 \leq y \leq \frac{\pi}{3} . \]

9.4.10 Curvilinear integrals

1.02 $

3 Problem: Calculate the arc length of the curve given in polar coordinates: \[ r=3(1+\sin a),-\frac{\pi}{6} \leq a \leq 0 \]

9.4.12 Curvilinear integrals

1.28 $

Problem: Calculate the line integral of the 2nd kind. \[ \int_{\Gamma} y d x-\left(y+x^{2}\right) d y \] where \( \Gamma \) is the arc of the parabola \( y=2 x-x^{2} \) from point \( A(2 ; 0) \) to point \( B=(0 ; 0) \).

9.4.13 Curvilinear integrals

1.02 $

(3) Problem: Having checked that the integrand is a total differential, calculate the line integral of the \( 2^{\text {nd }} \) kind. \[ \int_{(0,0)}^{(1,1)} x\left(1+6 y^{2}\right) d x+y\left(1+6 x^{2}\right) d y \]

9.4.14 Curvilinear integrals

1.54 $

31 Problem: Calculate the line integral of the \( 1^{\text {st }} \) kind along the space curve: \[ \int_{\Gamma}\left(x^{2}+y^{2}+z^{2}\right) d l \] where \( \Gamma \) is the first turn of the helix: \[ \left\{\begin{array}{c} x=a \cos t \\ y=a \sin t, \quad a>0, b>0 . \\ z=b t \end{array}\right. \]

9.4.15 Curvilinear integrals

1.02 $

  • ‹
  • 1
  • 2
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login