MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Find the decomposition of the vector \( a=(-2 ; 2 ; 2) \) into vectors \( b=(2 ; 1 ; 2) \), \( c=(0 ; 2 ;-2), d=(1 ; 2 ; 0) \).

1.1.1 Vector Algebra

0.76 $

Problem: 1. Find the dot product of vectors \( a=(\Gamma ; H ; 1 ; \Gamma ; 2) \) and \( b=(3 ; \Gamma ; 2 ; H ; 1) \). 2. Find the angle between vectors \( a=(1 ; H ; \Gamma ; 1 ; 2) \) and \( b=(2 ; H ; \Gamma ; 3 ; 1) \). 3. Find the cross product of vectors \( a=(1 ; H ; \Gamma) \) and \( b=(2 ; H ; \Gamma) \). Where \( \Gamma=2, H=2 \).

1.1.2 Vector Algebra

2.55 $

Problem: Find inverse matrix to matrix \( A \) of size \( \times n \) \[ \left(\begin{array}{cccccc} n & n-1 & n-2 & \ldots & 2 & 1 \\ 1 & n-1 & n-2 & \ldots & 2 & 1 \\ 1 & 1 & n-2 & \ldots & 2 & 1 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 1 & 1 & 1 & \ldots & 2 & 1 \\ 1 & 1 & 1 & \ldots & 1 & 1 \end{array}\right) . \]

1.4.1 Matrix transformations

3.82 $

Problem: Solve the matrix equation \[ A X=B, A=\left(\begin{array}{cc} 2 & 1 \\ 2 & -1 \end{array}\right), B=\left(\begin{array}{lll} 2 & 1 & 2 \\ 2 & 2 & 1 \end{array}\right) . \]

1.5.1 Systems of algebraic equations

0.76 $

Problem: Solve the system of equations \( \left\{\begin{array}{l}2 x+2 y=7 \\ 2 x-4 y=9\end{array}\right. \).

1.5.2 Systems of algebraic equations

0.51 $

Problem: Solve the system of equations \[ \left\{\begin{array}{c} x_{1}-2 x_{2}-2 x_{3}+x_{4}=1 \\ 2 x_{1}+2 x_{2}-x_{3}+x_{4}=1 \\ x_{1}-x_{2}+x_{3}-2 x_{4}=2 \end{array} .\right. \]

1.5.3 Systems of algebraic equations

1.02 $

Problem: Solve the matrix equation \( A X=B \), where \[ A=\left(\begin{array}{cccc} 0 & -5 & 0 & -2 \\ 2 & 1 & 1 & -4 \\ 0 & 0 & -5 & -1 \\ -1 & 1 & -3 & 2 \end{array}\right), B=\left(\begin{array}{c} -2 \\ -2 \\ -1 \\ 1 \end{array}\right) . \]

1.5.4 Systems of algebraic equations

2.55 $

Problem: Solve the matrix equation using the Gauss method: \( A X=B \), where \[ A=\left(\begin{array}{ccccc} 2 & 0 & -3 & 15 & 14 \\ -2 & 3 & -2 & 4 & 1 \\ -2 & 2 & -4 & 16 & 18 \\ -4 & 2 & -2 & 5 & 10 \\ 3 & -1 & 3 & -13 & -19 \end{array}\right), B=\left(\begin{array}{c} 19 \\ 17 \\ 16 \\ 0 \\ -1 \end{array}\right) \text {. } \]

1.5.5 Systems of algebraic equations

2.55 $

Problem: Solve the system of equations \( \left\{\begin{array}{c}3 x-y-z=2 \\ x+y+z=0 \\ 2 x+2 y+3 z=7\end{array}\right. \) a) Cramer's method, b) Gauss method, c) Inverse matrix method.

1.5.6 Systems of algebraic equations

2.55 $

Problem: Solve the system of equations using the Cramer's, Gauss and inverse matrix methods: \[ \left\{\begin{array}{c} x+y-z=2 \\ 2 x+y=3 \\ x-2 y+z=0 \end{array} .\right. \]

1.5.7 Systems of algebraic equations

2.55 $

Problem: For the given matrix equation a) solve it by the Gauss method, b) make a substitution check, c) solving (by the Gauss method) the equation \( A X=E \), find \( A^{-1} \), d) check the correctness of the answer by calculation \( A^{-1} A \), e) solve the given equation again using \( A^{-1} \), compare the results. \[ A=\left(\begin{array}{cccc} -2 & 3 & -1 & 0 \\ 2 & 0 & -2 & 0 \\ -6 & -3 & 3 & 0 \\ 0 & 0 & 0 & -2 \end{array}\right), B=\left(\begin{array}{cc} 1 & -2 \\ -3 & 0 \\ 2 & -1 \\ 1 & -1 \end{array}\right), A X=B . \]

1.5.8 Systems of algebraic equations

5.1 $

Problem: For the given matrix equation a) solve it by the Gauss method; b) make a substitution check; c) solving (by the Gauss method) the equation \( A X=E \), find \( A^{-1} \); d) check the correctness of the answer by calculation \( A^{-1} A \); e) solve the given equation again using \( A^{-1} \), compare the results. \[ \begin{aligned} A & =\left(\begin{array}{ccccc} 1 & 4 & -2 & 2 & -1 \\ 2 & 8 & -3 & 2 & -2 \\ 2 & 9 & -4 & 2 & -2 \\ 0 & -4 & 2 & -1 & 1 \\ -1 & -1 & 2 & -1 & 1 \end{array}\right), \\ B & =\left(\begin{array}{ccccc} 3 & -1 & 4 & 0 & 1 \\ 5 & 8 & -1 & 4 & 2 \\ 1 & -2 & 4 & 0 & 1 \end{array}\right), \quad A X=B . \end{aligned} \]

1.5.9 Systems of algebraic equations

5.1 $

Problem: 1. Find the angle \( C \) in the triangle \( A B C \), where \( A=(2 ; \Gamma ; H), B=(3 ; H ; \Gamma), C=(-3 ; 1 ; \Gamma) \). 2. Find the area of the triangle \( A B C \). 3. Find the volume of the tetrahedron \( A B C D \), where \( \quad A=(1 ; \Gamma ; H), \quad B=(-3 ; H ; \Gamma) \), \( C=(\Gamma ; 3 ;-1), D=(2 ; 7 ; \Gamma) \). Where \( \Gamma=2, H=2 \).

1.1.3 Vector Algebra

2.55 $

Problem: Calculate the determinant \( \left|\begin{array}{lllll}0 & 1 & 2 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 0\end{array}\right| \).

1.2.1 Determinant calculation

0.76 $

Problem: Calculate the determinant of the matrix of the \( n \)-th order \( a_{j k}=|j-k| \).

1.2.2 Determinant calculation

5.1 $

  • ‹
  • 1
  • 2
  • 3
  • 4
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login